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Cloud chambers and crystal growth: Effects of electrically enhanced diffusion
on dendrite formation from neutral molecules
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We present an extension of the solvability theory for free dendrite growth that includes the effects of
electrically enhanced diffusion of neutral polar molecules. Our theory reveals a new instability mechanism in
free dendrite growth, which arises when electrically enhanced diffusion near the dendrite tip overwhelms the
stabilizing influence of surface tension. This phenomenon is closely related to the growth instability respon-
sible for the visualization of charged particle tracks in cloud chambers, and is expected for enhanced diffusion
of neutral molecules, but not for the case of ionic diffusion. Above a threshold applied potential, the crystal
growth can no longer be described by the usual solvability theory, and requires a new physical mechanism to
limit the growth velocity. We also describe experimental observations of the free dendrite growth of ice
crystals from water vapor in supersaturated normal air. These observations demonstrate the calculated growth
instability, which results in the rapid growth of branchless ice needles with a tip velocity 5-50 times the
normal dendrite tip velocity. The production of clean ice needles is useful for the study of ice crystal growth
from vapor, allowing the controlled growth of isolated single-crystal samples. This instability mechanism may
find further application in crystal growth from a wide variety of polar molecuUl84063-651X%99)12203-1

PACS numbes): 68.70+w, 81.30.Fb

[. INTRODUCTION cluding essentially just two physical processes: diffusion
and surface tension. The theory has been widely tested, and
The formation of stable spatial patterns is a fundamentahchieves good quantitative agreement with a humber of nu-
problem in the study of nonlinear nonequilibrium systemsmerical and experimental systems. In particular, the theory
[1-4]. A now-standard example of a simple pattern-formingwas recently extended to the fully three-dimensional case
system is the diffusion-limited growth of free crystalline [10], comparing well with experimental observations and nu-
dendrites, which are nearly ubiquitous products of solidifica-merical simulations in most casgkl,12.
tion [5]. Dendrite growth ofteribut not alway$ results when It was found over a half-century ago that the diffusion
diffusion regulates the propagation of a solidification frontequation allows the solution of a parabolic solidification
through a metastable medium, as occurs during solidificatiofront which advances at a constant velocity, known as the
controlled by thermal diffusion in an overcooled melt, andlvantsov solution[3,13]. The Ivantsov dendrite is param-
solidification via particle diffusion of a supersaturated gas inetrized by the radius of curvature of its tiR, and the tip
a solvent vapor. Dendritic solidification is found frequently growth velocity, v, which are related bwR=2DP(A),
in nature, for example, the formation of snow crystals in thewhereD is the diffusion constant and the dimensionless Pe-
atmosphere, dendritic patterns in rocks, and is also often seatet numberP is found to be a function of the generalized
in the formation of metal castings, weldments, and otheundercooling or supersaturation. In the limit of smJlor
metallurgical processd$]. equivalently smalb, P is determined by the relationship
For the work presented here we will mainly be concerned=—P In P.
with the simplest type of stable dendrite growth, in which  The diffusion equation alone provides only this relation
surface kinetics and surface transport processes are consisetweenR and v, however, which is insufficient to deter-
ered negligible. Such systems have now been extensivelyine either. Furthermore, the Ivantsov solution was found to
studied both experimentally and theoretically in a variety ofbe unstable via the Mullins-Sekerka instabiliy4]. Because
circumstances over several decad#s-3]. In this simple smallerR implies faster, this instability tends to decrease
case the dendrite attributes includea nearly parabolic den- the radius of curvature of a growing dendrite tip with time, in
drite tip, which advances with constant velocity in a shape-contrast to the observed shape-preserving growth morphol-
preserving growth morphology; andii) secondary and ogy.
higher-order sidebranches, which form behind the growing Surface tension, via the Gibbs-Thomson effect, provides
tip. the mechanism which competes with the Mullins-Sekerka
Microscopic solvability theory has been very successfulinstability and produces stable dendritic growth. During the
in furnishing a mathematically consistent and dynamicallydevelopment of solvability theory it was realized that surface
stable solution for this simple dendrite growf6—10Q, in-  tension introduces a singular perturbation into the problem,
which is difficult to deal with mathematicallj6—10|. As
was found in early computer simulations, this leads to the
*URL: http://www.its.caltech.edd/atomic/. Electronic address: result that stable dendrite growth requires an anisotropic sur-
kgl@caltech.edu face tension, since otherwise the dendrite solution is unstable
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to a tip-splitting perturbation. Including an anisotropic sur-dendrite growth becomes unstable, and the tip velocity can
face tension, solvability theory provides a solution which inno longer be limited by surface tension. Experimentally we
three dimension&3D) is nearly a paraboloid of revolution in  found this leads to a new runaway growth regime, producing
the vicinity of the dendrite tip, growing at constant tip veloc- thin branchless needle crystals growing with much higher
ity [10,11. Instabilities and noise amplification producing than normal tip velocities. We describe here in some detail a
sidebranching have also been well studied, and it has beanodified solvability theory, including electrically enhanced
found that sidebranch formation has a minimal effect on thaliffusion, which appears to describe the observed phenom-
tip growth behavior, and can typically be ignored without enon. We also describe below how tip heating may be re-
significant consequence in the calculationRoandv . sponsible for stabilizing the needle tip velocity in the fast
In the present paper we focus on simple dendrite growtlgrowth regime.
from a supersaturated vapor in a solute gas, and assume the
solute molecules are neutral but possess a significant electric Il. DENDRITE GROWTH THEORY
polarizability. By applying an electrical potential to the o .
growing dendrite we then produce enhanced diffusion of the 10 Simplify the notation and treatment of the problem, we
solute molecules which can greatly perturb the normal denfocus on a specific example of dendrite growth theory,
drite growth. This is a specific case of what can be consigh@mely growth via particle diffusion of solute molecules in a
ered a general class of externally forced solidification propSolvent gas, which best describes our experiments below.
lems, namely dendrite growth in the presence of external he solute concentration is assumed low, and the s_olute m_ol-
force terms in the diffusion equation, especially when theecules are taken to be neutral with nonzero electric polariz-

external forces depend on the presence of the dendrite itsefiPility. The solvent molecules, however, are assumed neutral
and unpolarizable. We also initially neglect the latent heat

Electric field effects generated by the condensing molecules, since for low solute

i . concentrationgsmall v limit) this can be quickly removed
There have been numerous studies of pattern forma’uoBy the solvent gas.

induced by electrically enhanced particle mobility, both in ~ thus the dendrite growth is governed by the diffusion
charged and uncharged systems. A favorite experimental sy%- uation which. in the oresence of an external fdicebe-
tem is electrodeposition, which is typically controlled by the g ’ prs . ¢
e M . : , .~ comes the Smoluchowski equatifi]
diffusion and migration of ions in an electrolytic medium
between two electroddgl]. These systems often produce a gc . . R
fractal-like growth resulting from diffusion-limited aggrega- E=V~(DVC—bCF),
tion, but a wide variety of growth morphologies have been

observed, including simple dendritic pattefi$]. In addi-  \yherec(r) is the solute number densit, is a scalar diffu-
tion to electrically enhanced diffusion and surface tensiongjy, constant, andis the mobility of the solute molecules in
however, these systems are governed by a number of COfe solvent. The particle mobility and diffusion constant are

plex _factors, including activation chemistry and transport dy-g|ated via the Einstein relatiob=D/kT, so we can write
namics near the electrode surfaces, and much work has gone

into understanding the interplay of the different electro- ac S . .

chemical and physical proces4d$]. —=DV-(Vc+cf), (1)
By contrast, the system under consideration here is quite

simple, being mathematically only slightly more complex it f= —pF/D=—F/KkT. For electrically enhanced diffu-

than the simplest dendrite growth systems. In the context ofjoy the applied force arises from an electrostatic potential,
the present work, we also point out that electrodepositiohich is applied to the growing dendrite via an electrical
systems nearly always involve the electric-field-mediated,onnection far from the dendrite tip. We take the solute mol-
t_ransport ofchgrged molecules within thg electrolyte solu- oqjles to have polarizability, and assume the growing den-
tion. As we discuss below, the behavior of charged mOlyite is a perfect conductor, which is reasonable since in our
ecules in an electric field with large field gradients is S'Qn'f"experiments the current flow induced by the applied potential

cantly gif;?reg.tﬁfrom th?ft of neutrarl]l molecurlles, ang tlhis leadss hegligible. With these assumptions, the external force can
to markedly different effects on the growth morphology. : . Py
Electric-field-induced transport of neutral particles hasbe written as the gradient of a potentiar =V (p-E)/kT

also been extensively studied for systems of aerosol par= — VP, where

ticles, and has found widespread industrial application as a

means to remove contaminants from air streams. Pattern for- d=—(

mation in such systems has also been studied, and long fila- kT

gi':grtyoitmztugrskarr:p%f:teer:johb:rzr’vﬁ]ag'fgfr:]zgg? |2,f 'S attr::rn Sand the eJectriE field in turn is the gradient of the electrical

from aerosols involves complex surface processes that aRotentialE=—-Ve. o .

not easily modeled, whereas the dendrite growth we are con- 9noring interface kinetics, the continuity equation at the

sidering is governed primarily by simple surface tension. interface yields the normal component of the surface growth
As we reported previouslji8], electrically enhanced dif- 'ateva=(A-vsy) as

fusion in the present case results in a new instability mecha- D

nism in dendrite growth. If the electrical potential being ap- V=

plied to the dendrite is raised above a threshold value, the Csolid

a

E-E)

- (Vetcf)lsur, )
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where cqjiq IS the solid number density and the right-handmolecules, which is responsible for the visualization of

side is evaluated at the solidification frdr9]. charged-particle tracks in a cloud chamber. For uncharged
particles, the Gibbs-Thomson effect provides that droplets
A. Spherical case with R<R.;;=dy/A; have a growth velocity <0, and thus

It is instructive to solve the above in the simple case of aW'” evaporate. However, since the last term in &) in-

growing sphere in the limib—0. Thendc/dt~0 and the creases faster thaRR™~ with decreasingR, sufficiently

diffusion equation can be integrated to give chargec_i droplets will experience runaway growth forRall
That this very same simple effect produces an analogous

B B r runaway instability in dendrite growth was only recently rec-
c(r)=c(R)+ RTT j fcdt ognized[18].
R One might think that this dendrite growth instability
with would also be present in the dendritic and fractal growth of
electrochemical systems, which have been extensively stud-
ied. Electrochemical deposition is a significantly more com-
' plex process, which has produced a rich phenomenology;
nevertheless, the same basic physical mechanisms—
whereR is the sphere radius anfic=c..—c(R)>0. This  electrically enhanced diffusion and surface tension—are of-
gives a growth velocity ten dominant. In electrochemical deposition, however, the
solute particles are charged, which significantly changes the
nature of the electrically enhanced diffusion. For the spheri-
' (3) cal case with solute particles possessing chagyghe exter-

nal force is|f=qI§, which yields the growth velocity

B=R Ac+f fcdr
R

_ Dcsat
R Csoiid

where c(R)=cg,(1+dy/R) includes the Gibbs-Thomson
effect, withdy=2B/c4,ik T, B is the surface tensiom, is

d o0
Ap— —°+c;a%J fc dt

v = .

the saturation number density, aAd= (C.,,— Cga)/Csat- v= D Coat _ %_ %}
For the electric force we have, frofr= — d®/dr above, R Csoiid R kT
that
Ao olR2 Since the additional term has mbdependence, surface ten-
B apgR

f(r) — sion can still stabilize the growth, in contrast to the neutral

kTr case. We cannot definitely conclude that there will not be
additional growth instabilities in charged systems; however,
we can conclude that growth from neutral polarizable mol-
ecules may exhibit phenomena that have not been seen in
electrochemical systems.

where ¢ is the external potential applied to the dendrite.
Since this falls off very rapidly withr in comparison with
c(r), the last term in Eq(3) becomes

0 2
. - [Ro
Ceni | fedi=|—=|, - .
R R B. The modified Ivantsov solution

Since the electrical force added to the diffusion equation
does not have a particularly simple form in parabolic coor-
DCgyt dg [Rp\? dinates, it appears to be impossible to write down an exact
= RCoy 1~ ﬁ+ (E) } (4) solution analogous to the Ivantsov solution for growing den-
olid drites in the limit of zero surface tension. Numerical tech-

Typical parameter values for the experiments describe#tiques can be used to address this prokl2dj, but we find
below areT~ —15°C,D~2x 10 ®m?sec ! for water mol-  that we can obtain an approximate analytic expression that
ecules in air at one atmosphe®,/Ceig~1.5<107° and appears to contain all the essential physics. Because
A,;~0.5. The measured surface tensionds0.109Jm? Csat Csoig< 1, the dendrite tip velocity is very slow and the
[20], giving dy=2.0 nm at—15°C, and the measured polar- diffusion lengthlp=2D/v is much larger than the typical
izability of water is[20] size of an experimental apparatus. In this slow growth limit
we can takeic/dt=0 in the diffusion equation. Assuming a

whereRy= (a@3/kT)*?, giving

v

o= Heff _ (Mé 13KT) + o pargbol_lc crystal surface at potentig}, the electric poten-
E tial is simply
~3.4x10%° Cc?2 m N1 e=AIn(5/R)+ ¢q
o]
o1 in parabolic coordinates, where= — ¢q/In(7../R) and we
R — APy 1 ) assumep=0 on the far boundary ay= 5.,. The external
07\ kT ~(1 pm) 1000 V/° force potential then becomes

At this point we can make the century-old observation
that electrically enhanced diffusion leads to an instability in P @

the growth of droplets formed from a vapor of polarizable kT

A2
7’

4n

n+é
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ol (o

take the diffusion equation to be?(c—cg,®)=0, and ne-

Since this falls off rapidly away from the dendrite tip, we 1
Csafo} K— p §
glect the ¢ dependence of ®, taking ®~d(7)

=4aA?/kT7?. We then have Riec 1 Copic? 1
=Ac+KoCsarmz — 7 SD' 3@ FURAICLY
C(7) = Csa®(7) =B IN(9/R) + Csar— CsafP surt )
_Ac—Cce AP whereK is a numerical factor of order unity, the value of
In(7./R) ’ which depends weakly on the detailed form of the dendrite
solution. Expressingic as
which yields the tip velocit
’ T Ac= - S 3@ > (P 2)|dA}
2D ¢ R? 4m D Xo ’
sat elec
v=——< 1+—2) 5 o : ,
RIN(7.,/R) Csolig R which is thed,=0 expressio9], then yields
in the absence of surface tension, where ;L Riec. 1 Cooli®
Csafox’ = KOCsat_RZ_ + 47 D
2 2
R2 :4aA _ dapy . ® 1 1
elec” kT  kTIn%(7./R) X 39 5 (Po-2) |dAG— % < (0-2) A},
0

For Ree=0 this becomes the slow-growth limit of the wherex’ is equal to the quantity in curly brackets in E@).

Ivantsov solution if we identifyy..~Ip . Rewriting this in dimensionless length coordinateX,
=X/R, etc., gives
C. Solvability theory

We next need to include surface tensi@apillarity) in 07<’=Ko§§.ec2—D ﬁ+ L
the dendrite growth theory, in order to stabilize the tip VR Cqpiig 27
growth and select a unique tip radius and velocity. For this
we work in the slow-growth limit and follow the solvability 1 =, 1 . |~,
theory described ifi9], extending it to include the effects of ><| 39 X:(no»z) dAg— i(nz) dA"t,
0

electrically enhanced diffusion. Writing the diffusion equa-
tion asV2c=cg,V2®, we can treat the right-hand side as ayhere
source term, and in analogy with electrostatics we use
Green'’s theorem to rewrite the differential equation as an ~ 2doD Csy
integral equation22], " UR? Coyid

——Cc—

c V2P 1 1 dc d (1 i is Wi ili i
o(R) = 4_s;tf av'+ - % [ ( ”dA’, Comparing this with normal solvability theory, for which

X X on’ an’ | X Rae= 0, and substituting in the modified Ivantsov result for
vR, we can then write
whereX=|X—X'|, and the volume and surface integrals are R2 R2 | -1
over the region external to the growing crystal. The surface ~ ot K 2l A elec 8
. . 0~09 R2 1T R2 ) ®
integrals over the far boundary reduce simplycig and the

surface  gradient ofc is equal to Jc/on’'=(Ceoia/ \pore o can pe recognized as the solvability parameter for
g . ) ; . ] 0
D)(N-Usur). ASsuming shape-preserving growth with a ve Reec=0, namely in the absence of electrically enhanced dif-

locity v =v2, and an approximately parabolic shape with tipfusion andK is a positive constant

radius of curvature®, this becomes It is well known that the analysis so far, while describing
an essential scaling relation for dendrite growth, falls consid-

Csat Vi) 1 Csoiv i ; —
C(R)=Copt -2 dv’ — — Zsod” erably short of solving the entire problem. In tRg,.=0
4w ) X 4w D case, for example, further analysis is needed to show that
1 1 9 /1 09— 0 in the absence of an anisotropic surface tension, and
X 35 —(A-2)|dA" + — 35 c—,(—) }dA’, that there is no stable shape-preserving growth in that limit-
X Am an’ |\ X ing case[6—9]. We assume that our initial assumption of

shape-preserving growth is valid, requiring some anisotropy
where the surface integrals are now over only the crystain the surface tension to produce a nonzero valuer@f
surface. Here the signs have changedismow points out Much of the detailed physics arising from the addition of
from the crystal surface. Placing on the crystal surface, electrically enhanced diffusion has been bundled into the
With Cgr= Csait Csatcdo, Wherex is the inverse mean radius value of the numerical constakt, which is seen to depend
of curvature, and performing the volume integral over aon the detailed dendrite solution in an intimate way. A full
paraboloid-shaped crystal yields computation to determin& would be quite complex, no



PRE 59 CLOUD CHAMBERS AND CRYSTAL GROWTH: EFFECS. .. 3257

doubt requiring numerical evaluation. However, examinationincreasing tip velocityy may be sufficient to stabilize the
of the implications of the scaling relatiof) suggests that electric needle growth. Tip heating was ignored in the dis-
the precise value df (even takingK —0) has only a minor  cussion above, which is valid for small but can become
effect on the growth behavior, which is easily parametrizedsignificant at the highey produced by electric growth, as is
for comparison with observations. seen in using the following argument.

Combining the solvability relatiori8) and the modified We consider the growth of a semi-infinite rod of constant
Ivantsov relation(5) yields a simple quadratic equation for 5gius R, where condensing molecules cause the rod to in-

the dendrite tip radius crease its length with velocity. Heat is deposited at the
growing end of the rod at a ra@,,,—= @M, wherea is the
latent heat of condensatioM = 7R?vp is the mass deposi-

where A= (oo+K)/ oA, and Ry=dq IN(7,,/R)/aed; is the tion rate, and is the solid density. We assume that this heat
normal selected dendrite tip radius whieg.—=0 [note that conduc'Fs along the rod f_or some distahcand is then con-
since 7..> R, In(z,./R) depends only very weakly oR]. In ducted into 'Fhe surrogndmg sqlvent gas. Convegtlon W|II.aIso
our previous paper we assumed a constant solvability paran‘i’—Iay a ro_Ielln removing hgat into the ;urroundl_ng medium,
eter, which is equivalent to takin=0. The above more but we will ignore its contribution for this approximate treat-
rigorous treatment makes a small change in the valua, of Ment. Conduction down the rod is approximateQ,q

but yields qualitatively the same basic result as was found if* ©soid TR?)AT/L, where kg is the conductivity of the
[18]. solid and AT=T,— Tambient IS the temperature difference

For Rgec<R, this gives the tip radiusR~Ry(1 between the end of the rod and the ambient medium. Con-

— AR /R3) and tip velocityv ~vo(1+A’R%./R3), where  duction into the surrounding gas is approximat€y,pent

A’=A+1/A,. The radius decreases with increasiRge. = KsolvenTLAT/IN(R./R)~ksonen AT. Since in steady state

until a limit is reached wheRee= Ro/2AY% at which point  we must have Qipu=Qros=Qsonens this gives AT

R=Rnin=Ry/2 andv = v max=200(200+K)/(0p+K). The qua-  ~ (kyjigksoven) 2apv R. From Eq.(5) above we can see that

dratic equation has no real roots Rges>Ro/2AY indicat-  yR increases with decreasifjasv R~ (Rqeo/R)? for large

ing that the above modified solvability theory cannot be used,.in the electric growth regime. Thus we find a tip heating

for large Reec, Or equivalently wheng, is above some that is strongly dependent dR which will act to stabilize

threshold potentiad ax- the needle growth. As we discuss below, additional tip heat-
The lack of real roots for large applied potentials is re-ing may result from ionization effects, if the electric fields at

lated to the familiar phenomenon of nucleation in a cloudthe tip become excessive.

chamber, as we found above from the spherically symmetric

solution to the Smoluchowski equation. In the present case |||. EXPERIMENTS WITH ICE DENDRITE GROWTH

of dendrite growth, above a threshold potential we find that

surface tension can no longer stabilize the tip radius. At this An experimental demonstration of this growth instability

point the tip experiences runaway growthRas-0 under the Was realized by growing ice dendrites from water vapor

influence of the Mullins-Sekerka instabilihere enhanced [18,23. In many regards water ice is not an ideal experimen-

by electric forces The tip velocity thus increases until it is tal system for these measurements, since it is known that
stabilized by some other mechanism. surface kinetic effects are usually very important in ice crys-

tal formation, resulting in strongly faceted crystal growth
[24-26G. The above theoretical calculations, however, are
based on standard solvability theory, which does not include
We refer to crystal growth withp> ¢ ., as the “elec- any such surface kinetic effects. Furthermore, the surface
tric” needle growth regime, which is distinct from the nor- structure of ice is very complex, being dominated by the
mal growth regime in that the tip velocity is no longer sta- dynamics of a thin quasiliquid lay¢B5], resulting in a rich
bilized by the Gibbs-Thomson effect of surface tension.crystal growth behavior as a function of temperature and
Observations in this regimésee below reveal a rapidly supersaturatiofi26]. From the experimental side, however,
growing needle morphology, which again exhibits a shapewater ice is very easy to work with, given its convenient
preserving growth. For this to occur we must have some nevireezing temperature, and the large polarizability of water
physical mechanism which stabilizes the tip velocity againsmolecules facilitates the electrical effects we wish to ob-
the Mullens-Sekerka instability. Furthermore, this mechaserve.
nism must turn on very rapidly with decreasing tip radius, We find that we can greatly reduce the effects of surface
more rapidly than the Gibbs-Thomson effect, in order to prokinetics by growing ice dendrites at a temperature near
vide the necessary stabilizing effect in the electric growth—15°C (near the dendrite growth pe4R6]) and at super-
regime. saturationsA;=0.4. In this region of parameter space the
We suggest that tip heating, arising from the latent heaprism faces of the growing dendrites are rough, yielding den-
generated by the condensing molecules, is a likely candidatdrites with approximately parabolic tips. In this parabolic
for a stabilizing effect. The vapor pressure above the solid isegime, the growth of the prism faces is described by the
seen from the Clausius-Clapeyron equation to increase expétertz-Knudsen relatiofi27], and is no longer dominated by
nentially with increasing temperature, @s-exp(—Ty/T), surface kinetics. In contrast, growth of the basal faces in this
whereT, is equal to the latent heat per molecule divided byregime is still affected by surface kinetics, producing nearly
the Boltzmann constant. Thus a small increaseT imith flat two-dimensional dendrites. However, on top of the flat

R*— RoR+ AR§|EC= 0, ©)

D. Stabilization of electric needle growth
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FIG. 2. Data points show measurements of the tip velocity of a
single growing dendrite as a function of the applied electrical po-
tential. The solid line is a fit to the points using the modified solv-
ability theory described in the text. The two free parameters in the
theory,vg and ¢y, Were adjusted in a least-squares fit to the data,
which gave a best fitp,,,,=1450V. This dendrite underwent a
tip-splitting instability when the potential was raised from 1300 to
1400 V.

(d)
construction, being cooled at the base by a commercial
chiller system. Both the top and bottom of the chamber were
temperature regulated using an inner layer of thermoelectric
coolers controlled by a servo mechani§2®]. The solvent
gas in the chamber was ordinary laboratory air at one atmo-
sphere of pressure, and water vapor was supplied at the top
of the chamber via a water-soaked felt reservoir. We ob-
served the crystal growth to be somewhat sensitive to vapor
impurities in the air, particularly solvents from glue used in

FIG. 1. Morphologies of ice crystal dendrites grown from su- the chamber construction, so care was taken to minimize
persaturated air at 15 °C. All four images have the same scd®.  these effects. Imaging of the growing crystals was done from
Normal dendrite growth ah,~1, with no applied electrical poten- the side, using a standard video camera attached to one eye
tial; (b) unusual growth at a potential of 2000 V, with~1, show-  of a long-distance stereo microscope. Images were digitized
ing the SUpreSSion and stabilization of Sidebranching. The tlp VelOCusing a video frame grabber attached to a persona' Computer,
ity and sidebranch spacing both increased as the tip advanced in{gith software for time-lapse imaging. The images were all
surroundipgs with higher supersaturation. Note that in this morPhOI'digitized at a resolution of 649480 pixel resolution, with a
ogy the 5|debr_anch_es appear fully d_eveloped_very near the pp re['ypical scale of 10um/pixel. Figure 1 shows several ex-
glo.n;.(c) a cont!r)uatlon of the growth itb), showing a common tip amples of dendrite images.
splitting instability that occurs _above the threshold potential. Here Ice dendrites were grown on a thin tungsten wire, through
there appears a sudden rotation of the crystal axes by (@Da hich lectrical potential was applied. A quantitative
dendrite grown at\;~0.5, showing a smooth transition from nor- whic 6.m N ec.: P pplied. . 9 .
mal growth to a rapidly growing needle morphology. The tip ve- comparison with the above .theory was realized by fl_rSt es-
locities before and after the transition are 5 anduf@sec, respec- tab_llshlng the grOWth O_f a smglg normap¢=0) dendrite,
tively. Whl(_:h _had a tip velocqy of typ|_callyu~3 Mm/sec. Af_ter

achieving a stably growing dendrite, an electric potential was
dendrite plate we typically observe a ridgelike growth, whichapplied to the tungsten wire. The finite conductivity of ice
forms a “backbone” as the dendrite growth proceeds, as caand slow dendrite growth, along with the very low current
be seen in Fig. 1. This backbone structure is also commonlffow [23], ensured that the dendrite possessed a nearly equi-
seen in the growth of “sectored plate” ice crystals, and itspotential surface. Occasionally the applied potential resulted
formation is at present poorly understd@8]. Nevertheless, in dendrites with a large uniform sidebranch spacing, which
the backbone results in a dendrite tip structure which is nots shown in Figs. (b) and Xc). This behavior is rare and is
nearly as flat as the dendrite as a whole, and thus the apurrently unexplained.
proximation of a paraboloidal shape is a reasonably accurate More typically the dendritic growth remained qualita-
one near the dendrite tip. tively similar to that of normal growth at low potentials, with

The experiments were performed in a vertical thermal dif-v increasing withey up to a threshold potential. Figure 2
fusion chamber, measuring 15 cm in width and depth, and 38hows measurements of the tip velocity of a single growing
cm in height. The chamber was of a triple-walled acrylic dendrite, wherep, was increased in steps during the growth.
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FIG. 3. Group of five ice crystal needlé@eft), grown along th¢0001] axis at—5 °C using an applied potential above threshold. After
the needles grew to approximately 1 cm in length, the electric potential was turned off and the crystals were lowet®8dQon the
diffusion chamber, which is the temperature at which platelike dendrites form. This resulted in the growth of normal single-crystal dendritic
stars at the needle ends; one of these is shown as a negative image at right, which has a diameter of 2.4 mm.

After each step irpy, the growth was allowed to stabilize to phenomen&30], possibly augmented by tip heating effects.

a constant tip velocity. We observe thatincreases slowly It is conceivable that the mobility of water molecules on
with increasingeq, until a threshold potential is reached, asthe growing crystal surface may be affected by the strong
is expected from the modified solvability theory above. electric field gradients near the sharp dendrite[8f], and

A comparison of the data and theory can be made byhus may possibly be responsible in some way for the insta-
combining Eqs(8) and (9) above into the approximate pa- bility reported here. We believe, however, that such effects
rametrized expressiofi8] v~4vo[1+(1— @5/ ¢2.0)" 22, ~ are minorin comparison to the enhanced diffusion described
whereuv, is the normal tip velocity. In Fig. 2 the two param- above. First of all, the applied surface fields, while substan-
etersv, and ¢, Were adjusted via least-squares to best fittial, are small compared to intrinsic crystal surface fields.
the measured points. This fit gayg,.,=1450V, which was And second, we observed that the main growth instability
in reasonable agreement with the observed threshold valugescribed here did not exhibit any dependence on the sign of
Unfortunately, a more quantitative comparison betweerthe applied potential. This observation also allows us to ef-
theory and experiment is very difficult with this system, ow- fectively rule out ionization effects near the dendrite tip as
ing to the unusual characteristics of ice growth. playing any significant role in the growth dynamics during

Above a threshold potential the enhanced dendrite growtglectrically enhanced normal growth. Electric needle growth
behavior became unstable. If the potential was slowly raisefnay be affected by ionization effects, however, particularly
above threshold witlh ;<0.6, the dendrite tip would some- if significant additional tip heating results. The applied po-
times make a smooth transition to a rapid growth behaviortentials and tip radii in the electric growth regime are such
as shown in F|g aj) This resulted in a thin, featureless that fields at the tlp are near the breakdown field for air, so
needle-shaped crystal, with a diameter&0—30um, mov-  ionization effects may be significant.
ing at velocities typically 20—7@m/sec along the original If a potential value above threshold were suddenly applied
a-axis direction(although velocities as fast as 2@@n/sec  at any saturation, the result was usually the copious produc-
were observed The rapid “electric” needle velocities were tion of thin needle crystals, similar to that shown in Fi¢d)1
observed to show considerable variation, which remaingvhich typically appeared from the sharp corners of faceted
mysterious since it was not always simply correlated with thecrystals. We observed electric needle growth along many
external growth conditions. A quantitative investigation of different crystalline axes, which were determined by remov-
the details of electric needle growth is currently in progressing the applied potential and observing the subsequent crys-

Not surprisingly, given the complex surface structure oftal growth morphology. Neat5 °C we could routinely grow
ice, we observed a variety of electrically induced growthice needles along thg001] axis, while at—15°C growth
behaviors[23]. If the potential was slowly raised at higher was often along thgl 120] axes. This growth behavior is no
saturations (0.8 A;<2), the dendrite tip often underwent doubt related to the normal temperature dependence in ice
the tip-splitting instability shown in Fig. (£). This resulted crystal growth[26]. We also frequently observed electric

in a restructuring of the crystal at the dendrite tip, so thaiheedle growth along thed110] axes[23], which is not cur-
further growth occurred from an appended crystal whosgently understood. Furthermore, we often observed needle
[1100] axis was approximately collinear with tteeaxis of  growth along seemingly random crystal orientations, sug-
the original crystaJ18]. We are uncertain of the cause of this gesting that the electrically enhanced diffusion was over-
peculiar behavior, which may be related to electrofreezingvhelming the otherwise dominant crystalline anisotropy.
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IV. DISCUSSION In addition to its intrinsic interest relating to dendrite
growth theory and phenomenology, this instability is particu-

rol\r/]vtr? uilg]sTaabri)Ili,t Wir:L?vr?t g)t?onl?t g n(:\clevcttr)i/c?aell mce:r?;'?ggglarly interesting because it results in the controlled growth of
growt Y, 9 . y y -_thin, featureless needle crystals, which can in principle be
diffusion of polar molecules in the presence of the dendrite

tip. The nature of this external force provides that the presgrown to any length. The growth dynamics of these needles

ence of the dendrite itself affects the diffusion of material to> qualitatively different from needile crystals grown via other

its surface, adding a nontrivial nonlinear term to the diﬁu_well—known techniques, for example via single screw dislo-
! 9 ations at needle tip$34], or via the vapor-liquid-solid

sion equation. The principal result of theory and eXperimenﬁwechanisn[%] and may be of some practical interest, par-

is the existence of a threshold potential, above which den. 7 .
drite growth can no longer be stabilized by surface tensior'%|cularly for the crystallization of large organic molecules,

effects. This instability is analogous to the droplet growthWhICh can have substantial electric polarizabilities.

) - . . . As a particular application, we find that the formation of
'T‘Stab"'ty rgsponsmle for the visualization of charged par_Iong thin, featureless electric needles is of some use in the
ticle tracks in cloud chambers. ' !

. L study of ice crystal growth, which remains an extremely
exvggt:és?ongée a:gg:e/ﬁt trnatefgftrétrhe;:ﬂgl b deehac\)lslﬁirgorf s S(:_hallenging case study because of strong three-dimensional
pecte P . : P Yurface kinetic effects, complicated by a quasiliquid layer.
tems, given the very different functional form of the electri-

cally enhanced diffusion of ionic solute molecules, Thus,Aﬂer first producing an electric needle with the desired crys-

. . o talline orientation, one can then remove the electric potential
although dendrite growth and other growth instabilities haveand observe the subsequent growth of isolated single ice

been seen in electrochemical deposition, the instability cal- rystals, as is demonstrated in Fig. 3. By growing crystals at
culated above appears to be unique to growth from neutreﬁm end of long needles, the saturation is relatively unper-

polarizable molecules. ; ; i
We note that the enhanced diffusion brought about by ar'%_urbed by the crystal support, allowing more detailed quan

applied potential is well understood at a fundamental Ievelntatlve measurement of ice crystal growth dynamics. This is

. . ; particularly true when investigating growth at high vapor
filgld I?of/ti:dagghttr:%w;?(rde:icr)n(;%rtgrr)u\fﬁthgu(?c’Jr:t]/gn?epr?tlIegoﬁg:]irlsupersaturations, where the perturbation from condensation
provic P . . ’ . on the crystal support can significantly interfere with the
ously adjustable parameter with which to alter d.end”tedesired growth. This work also suggests that one may need
gg%\?’tltleljjr&gi; Strli)dlgrstigsninotzhoenz F;?:Z(r)nsi/ostiig]sshvc\)l:nj Ieri?_o consider the effects of electrically enhanced diffusion
omp . prop parson to Ice Should prog ., observing the growth of charged ice crystals held in an
vide new insights into pattern formation in diffusion-limited electrodynamic trafi36]
growth. Such studies may shed light on remaining problems y '

in understanding the dependence of the stability parameter
on crystalline anisotropy11,32, and should also contribute

to the general theory of morphological transitions during The authors acknowledge support for V.M.T. by Mr. and
nonequilibrium growth 33]. Mrs. Downie D. Muir 1ll.
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