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Cloud chambers and crystal growth: Effects of electrically enhanced diffusion
on dendrite formation from neutral molecules

Kenneth G. Libbrecht* and Victoria M. Tanusheva
Norman Bridge Laboratory of Physics, California Institute of Technology 264-33, Pasadena, California 91125

~Received 14 October 1998!

We present an extension of the solvability theory for free dendrite growth that includes the effects of
electrically enhanced diffusion of neutral polar molecules. Our theory reveals a new instability mechanism in
free dendrite growth, which arises when electrically enhanced diffusion near the dendrite tip overwhelms the
stabilizing influence of surface tension. This phenomenon is closely related to the growth instability respon-
sible for the visualization of charged particle tracks in cloud chambers, and is expected for enhanced diffusion
of neutral molecules, but not for the case of ionic diffusion. Above a threshold applied potential, the crystal
growth can no longer be described by the usual solvability theory, and requires a new physical mechanism to
limit the growth velocity. We also describe experimental observations of the free dendrite growth of ice
crystals from water vapor in supersaturated normal air. These observations demonstrate the calculated growth
instability, which results in the rapid growth of branchless ice needles with a tip velocity 5–50 times the
normal dendrite tip velocity. The production of clean ice needles is useful for the study of ice crystal growth
from vapor, allowing the controlled growth of isolated single-crystal samples. This instability mechanism may
find further application in crystal growth from a wide variety of polar molecules.@S1063-651X~99!12203-7#

PACS number~s!: 68.70.1w, 81.30.Fb
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I. INTRODUCTION

The formation of stable spatial patterns is a fundame
problem in the study of nonlinear nonequilibrium syste
@1–4#. A now-standard example of a simple pattern-formi
system is the diffusion-limited growth of free crystallin
dendrites, which are nearly ubiquitous products of solidifi
tion @5#. Dendrite growth often~but not always! results when
diffusion regulates the propagation of a solidification fro
through a metastable medium, as occurs during solidifica
controlled by thermal diffusion in an overcooled melt, a
solidification via particle diffusion of a supersaturated gas
a solvent vapor. Dendritic solidification is found frequen
in nature, for example, the formation of snow crystals in
atmosphere, dendritic patterns in rocks, and is also often
in the formation of metal castings, weldments, and ot
metallurgical processes@5#.

For the work presented here we will mainly be concern
with the simplest type of stable dendrite growth, in whi
surface kinetics and surface transport processes are co
ered negligible. Such systems have now been extensi
studied both experimentally and theoretically in a variety
circumstances over several decades@1–3#. In this simple
case the dendrite attributes include~i! a nearly parabolic den
drite tip, which advances with constant velocity in a sha
preserving growth morphology; and~ii ! secondary and
higher-order sidebranches, which form behind the grow
tip.

Microscopic solvability theory has been very success
in furnishing a mathematically consistent and dynamica
stable solution for this simple dendrite growth@6–10#, in-
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cluding essentially just two physical processes: diffus
and surface tension. The theory has been widely tested,
achieves good quantitative agreement with a number of
merical and experimental systems. In particular, the the
was recently extended to the fully three-dimensional c
@10#, comparing well with experimental observations and n
merical simulations in most cases@11,12#.

It was found over a half-century ago that the diffusio
equation allows the solution of a parabolic solidificatio
front which advances at a constant velocity, known as
Ivantsov solution@3,13#. The Ivantsov dendrite is param
etrized by the radius of curvature of its tip,R, and the tip
growth velocity, v, which are related byvR52DP(D),
whereD is the diffusion constant and the dimensionless P
clet numberP is found to be a function of the generalize
undercooling or supersaturation. In the limit of smallP, or
equivalently smallv, P is determined by the relationshipD
52P ln P.

The diffusion equation alone provides only this relati
betweenR and v, however, which is insufficient to deter
mine either. Furthermore, the Ivantsov solution was found
be unstable via the Mullins-Sekerka instability@14#. Because
smallerR implies fasterv, this instability tends to decreas
the radius of curvature of a growing dendrite tip with time,
contrast to the observed shape-preserving growth morp
ogy.

Surface tension, via the Gibbs-Thomson effect, provid
the mechanism which competes with the Mullins-Seke
instability and produces stable dendritic growth. During t
development of solvability theory it was realized that surfa
tension introduces a singular perturbation into the proble
which is difficult to deal with mathematically@6–10#. As
was found in early computer simulations, this leads to
result that stable dendrite growth requires an anisotropic
face tension, since otherwise the dendrite solution is unst
3253 ©1999 The American Physical Society
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3254 PRE 59KENNETH G. LIBBRECHT AND VICTORIA M. TANUSHEVA
to a tip-splitting perturbation. Including an anisotropic su
face tension, solvability theory provides a solution which
three dimensions~3D! is nearly a paraboloid of revolution in
the vicinity of the dendrite tip, growing at constant tip velo
ity @10,11#. Instabilities and noise amplification producin
sidebranching have also been well studied, and it has b
found that sidebranch formation has a minimal effect on
tip growth behavior, and can typically be ignored witho
significant consequence in the calculation ofR andv.

In the present paper we focus on simple dendrite gro
from a supersaturated vapor in a solute gas, and assum
solute molecules are neutral but possess a significant ele
polarizability. By applying an electrical potential to th
growing dendrite we then produce enhanced diffusion of
solute molecules which can greatly perturb the normal d
drite growth. This is a specific case of what can be cons
ered a general class of externally forced solidification pr
lems, namely dendrite growth in the presence of exter
force terms in the diffusion equation, especially when
external forces depend on the presence of the dendrite it

Electric field effects

There have been numerous studies of pattern forma
induced by electrically enhanced particle mobility, both
charged and uncharged systems. A favorite experimental
tem is electrodeposition, which is typically controlled by t
diffusion and migration of ions in an electrolytic mediu
between two electrodes@4#. These systems often produce
fractal-like growth resulting from diffusion-limited aggrega
tion, but a wide variety of growth morphologies have be
observed, including simple dendritic patterns@15#. In addi-
tion to electrically enhanced diffusion and surface tensi
however, these systems are governed by a number of c
plex factors, including activation chemistry and transport d
namics near the electrode surfaces, and much work has
into understanding the interplay of the different elect
chemical and physical processes@16#.

By contrast, the system under consideration here is q
simple, being mathematically only slightly more compl
than the simplest dendrite growth systems. In the contex
the present work, we also point out that electrodeposit
systems nearly always involve the electric-field-media
transport ofchargedmolecules within the electrolyte solu
tion. As we discuss below, the behavior of charged m
ecules in an electric field with large field gradients is sign
cantly different from that of neutral molecules, and this lea
to markedly different effects on the growth morphology.

Electric-field-induced transport of neutral particles h
also been extensively studied for systems of aerosol
ticles, and has found widespread industrial application a
means to remove contaminants from air streams. Pattern
mation in such systems has also been studied, and long
mentary structures are often observed@17#. Here again, in the
context of the work reported here, the formation of patte
from aerosols involves complex surface processes that
not easily modeled, whereas the dendrite growth we are c
sidering is governed primarily by simple surface tension.

As we reported previously@18#, electrically enhanced dif-
fusion in the present case results in a new instability mec
nism in dendrite growth. If the electrical potential being a
plied to the dendrite is raised above a threshold value,
-
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dendrite growth becomes unstable, and the tip velocity
no longer be limited by surface tension. Experimentally
found this leads to a new runaway growth regime, produc
thin branchless needle crystals growing with much hig
than normal tip velocities. We describe here in some deta
modified solvability theory, including electrically enhance
diffusion, which appears to describe the observed phen
enon. We also describe below how tip heating may be
sponsible for stabilizing the needle tip velocity in the fa
growth regime.

II. DENDRITE GROWTH THEORY

To simplify the notation and treatment of the problem, w
focus on a specific example of dendrite growth theo
namely growth via particle diffusion of solute molecules in
solvent gas, which best describes our experiments be
The solute concentration is assumed low, and the solute m
ecules are taken to be neutral with nonzero electric pola
ability. The solvent molecules, however, are assumed neu
and unpolarizable. We also initially neglect the latent h
generated by the condensing molecules, since for low so
concentrations~small v limit ! this can be quickly removed
by the solvent gas.

Thus the dendrite growth is governed by the diffusi
equation which, in the presence of an external forceFW , be-
comes the Smoluchowski equation@19#

]c

]t
5¹W •~D¹W c2bcFW !,

wherec(rW) is the solute number density,D is a scalar diffu-
sion constant, andb is the mobility of the solute molecules i
the solvent. The particle mobility and diffusion constant a
related via the Einstein relation,b5D/kT, so we can write

]c

]t
5D¹W •~¹W c1c fW !, ~1!

with fW52bFW /D52FW /kT. For electrically enhanced diffu
sion the applied force arises from an electrostatic poten
which is applied to the growing dendrite via an electric
connection far from the dendrite tip. We take the solute m
ecules to have polarizabilitya, and assume the growing den
drite is a perfect conductor, which is reasonable since in
experiments the current flow induced by the applied poten
is negligible. With these assumptions, the external force
be written as the gradient of a potentialfW52¹W (pW •EW )/kT

52¹W F, where

F5
a

kT
~EW •EW !

and the electric field in turn is the gradient of the electric
potentialEW 52¹W w .

Ignoring interface kinetics, the continuity equation at t
interface yields the normal component of the surface gro
ratevn5(n̂•vW surf) as

vn5
D

csolid
n̂•~¹W c1c fW !usurf, ~2!
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PRE 59 3255CLOUD CHAMBERS AND CRYSTAL GROWTH: EFFECTS . . .
wherecsolid is the solid number density and the right-ha
side is evaluated at the solidification front@19#.

A. Spherical case

It is instructive to solve the above in the simple case o
growing sphere in the limitv→0. Then]c/]t'0 and the
diffusion equation can be integrated to give

c~r !5c~R!1
B

R
2

B

r
2E

R

r

f c dr̂

with

B5RFDc1E
R

`

f c dr̂G ,
where R is the sphere radius andDc5c`2c(R).0. This
gives a growth velocity

v5
Dcsat

Rcsolid
FD12

d0

R
1csat

21E
R

`

f c dr̂G , ~3!

where c(R)5csat(11d0 /R) includes the Gibbs-Thomso
effect, withd052b/csolidkT, b is the surface tension,csat is
the saturation number density, andD15(c`2csat)/csat.

For the electric force we have, fromf 52]F/]r above,
that

f ~r !5
4aw0

2R2

kTr5 ,

where w0 is the external potential applied to the dendri
Since this falls off very rapidly withr in comparison with
c(r ), the last term in Eq.~3! becomes

csat
21E

R

`

f c dr̂'S R0

R D 2

,

whereR05(aw0
2/kT)1/2, giving

v5
Dcsat

Rcsolid
FD12

d0

R
1S R0

R D 2G . ~4!

Typical parameter values for the experiments descri
below areT'215 °C, D'231025 m2 sec21 for water mol-
ecules in air at one atmosphere,csat/csolid'1.531026, and
D1'0.5. The measured surface tension isb50.109 J m22

@20#, giving d052.0 nm at215 °C, and the measured pola
izability of water is@20#

a5
meff

E
5~m0

2/3kT!1a8

'3.4310239 C2 m N21

so

R05S aw0
2

kT D 1/2

'~1 mm!S w0

1000 VD .

At this point we can make the century-old observati
that electrically enhanced diffusion leads to an instability
the growth of droplets formed from a vapor of polarizab
a

.

d

molecules, which is responsible for the visualization
charged-particle tracks in a cloud chamber. For unchar
particles, the Gibbs-Thomson effect provides that drop
with R,Rcrit5d0 /D1 have a growth velocityv,0, and thus
will evaporate. However, since the last term in Eq.~4! in-
creases faster thanR21 with decreasingR, sufficiently
charged droplets will experience runaway growth for allR.
That this very same simple effect produces an analog
runaway instability in dendrite growth was only recently re
ognized@18#.

One might think that this dendrite growth instabilit
would also be present in the dendritic and fractal growth
electrochemical systems, which have been extensively s
ied. Electrochemical deposition is a significantly more co
plex process, which has produced a rich phenomenolo
nevertheless, the same basic physical mechanism
electrically enhanced diffusion and surface tension—are
ten dominant. In electrochemical deposition, however,
solute particles are charged, which significantly changes
nature of the electrically enhanced diffusion. For the sph
cal case with solute particles possessing chargeq, the exter-
nal force isFW 5qEW , which yields the growth velocity

v5
Dcsat

Rcsolid
FD12

d0

R
2

qw0

kT G .
Since the additional term has noR dependence, surface ten
sion can still stabilize the growth, in contrast to the neut
case. We cannot definitely conclude that there will not
additional growth instabilities in charged systems; howev
we can conclude that growth from neutral polarizable m
ecules may exhibit phenomena that have not been see
electrochemical systems.

B. The modified Ivantsov solution

Since the electrical force added to the diffusion equat
does not have a particularly simple form in parabolic co
dinates, it appears to be impossible to write down an ex
solution analogous to the Ivantsov solution for growing de
drites in the limit of zero surface tension. Numerical tec
niques can be used to address this problem@21#, but we find
that we can obtain an approximate analytic expression
appears to contain all the essential physics. Beca
csat/csolid!1, the dendrite tip velocity is very slow and th
diffusion length l D52D/v is much larger than the typica
size of an experimental apparatus. In this slow growth lim
we can take]c/]t50 in the diffusion equation. Assuming
parabolic crystal surface at potentialw0 , the electric poten-
tial is simply

w5A ln~h/R!1w0

in parabolic coordinates, whereA52w0 /ln(h` /R) and we
assumew50 on the far boundary ath5h` . The external
force potential then becomes

F5
a

kT S 4h

h1j D A2

h2 .
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Since this falls off rapidly away from the dendrite tip, w
take the diffusion equation to be¹2(c2csatF)50, and ne-
glect the j dependence of F, taking F'F(h)
54aA2/kTh2. We then have

c~h!2csatF~h!5B ln~h/R!1csat2csatFsurf,

B5
Dc2csatDF

ln~h` /R!
,

which yields the tip velocity

v5
2D

R ln~h` /R!

csat

csolid
S D11

Relec
2

R2 D ~5!

in the absence of surface tension, where

Relec
2 5

4aA2

kT
5

4aw0
2

kT ln2~h` /R!
. ~6!

For Relec50 this becomes the slow-growth limit of th
Ivantsov solution if we identifyh`' l D .

C. Solvability theory

We next need to include surface tension~capillarity! in
the dendrite growth theory, in order to stabilize the
growth and select a unique tip radius and velocity. For t
we work in the slow-growth limit and follow the solvability
theory described in@9#, extending it to include the effects o
electrically enhanced diffusion. Writing the diffusion equ
tion as¹2c5csat¹

2F, we can treat the right-hand side as
source term, and in analogy with electrostatics we
Green’s theorem to rewrite the differential equation as
integral equation@22#,

c~xW !5
csat

4p E ¹2F

X
dV81

1

4p R F 1

X

]c

]n8
2c

]

]n8 S 1

XD GdA8,

whereX5uxW2xW8u, and the volume and surface integrals a
over the region external to the growing crystal. The surfa
integrals over the far boundary reduce simply toc` , and the
surface gradient of c is equal to ]c/]n85(csolid/
D)(n̂•vW surf). Assuming shape-preserving growth with a v
locity vW 5v ẑ, and an approximately parabolic shape with
radius of curvatureR, this becomes

c~xW !5c`1
csat

4p E ¹2F

X
dV82

1

4p

csolidv
D

3 R F 1

X
~ n̂• ẑ!GdA81

1

4p R Fc
]

]n8 S 1

XD GdA8,

where the surface integrals are now over only the cry
surface. Here the signs have changed son̂ now points out
from the crystal surface. PlacingxW on the crystal surface
with csurf5csat1csatkd0 , wherek is the inverse mean radiu
of curvature, and performing the volume integral over
paraboloid-shaped crystal yields
s

e
n

e

-

al

csatd0H k2
1

4p R Fk~x8!Xn̂8•¹W S 1

XD CGdA8J
5Dc1K0csat

Relec
2

R2 2
1

4p

csolidv
D R F 1

X
~ n̂• ẑ!GdA8,

~7!

whereK0 is a numerical factor of order unity, the value o
which depends weakly on the detailed form of the dend
solution. ExpressingDc as

Dc5
1

4p

csolidv
D R F 1

X0
~ n̂0• ẑ!GdA08 ,

which is thed050 expression@9#, then yields

csatd0k85K0csat

Relec
2

R2 1
1

4p

csolidv
D

3H R F 1

X0
~ n̂0• ẑ!GdA082 R F 1

X
~ n̂• ẑ!GdA8J ,

wherek8 is equal to the quantity in curly brackets in Eq.~7!.
Rewriting this in dimensionless length coordinates,X̃
5X/R, etc., gives

sk̃85K0R̃elec
2 2D

vR

csat

csolid

1
1

2p

3H R F 1

X0̃

~n0̂• ẑ!GdÃ082 R F 1

X̃
~ n̂• ẑ!GdÃ8J ,

where

s5
2d0D

vR2

csat

csolid
.

Comparing this with normal solvability theory, for whic
Relec50, and substituting in the modified Ivantsov result f
vR, we can then write

s's01K
Relec

2

R2 S D11
Relec

2

R2 D 21

, ~8!

wheres0 can be recognized as the solvability parameter
Relec50, namely in the absence of electrically enhanced d
fusion, andK is a positive constant.

It is well known that the analysis so far, while describin
an essential scaling relation for dendrite growth, falls cons
erably short of solving the entire problem. In theRelec50
case, for example, further analysis is needed to show
s0→0 in the absence of an anisotropic surface tension,
that there is no stable shape-preserving growth in that lim
ing case@6–9#. We assume that our initial assumption
shape-preserving growth is valid, requiring some anisotro
in the surface tension to produce a nonzero value ofs0 .
Much of the detailed physics arising from the addition
electrically enhanced diffusion has been bundled into
value of the numerical constantK, which is seen to depend
on the detailed dendrite solution in an intimate way. A fu
computation to determineK would be quite complex, no
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doubt requiring numerical evaluation. However, examinat
of the implications of the scaling relation~8! suggests tha
the precise value ofK ~even takingK→0! has only a minor
effect on the growth behavior, which is easily parametriz
for comparison with observations.

Combining the solvability relation~8! and the modified
Ivantsov relation~5! yields a simple quadratic equation fo
the dendrite tip radius

R22R0R1ARelec
2 50, ~9!

whereA5(s01K)/s0D1 and R05d0 ln(h` /R)/s0D1 is the
normal selected dendrite tip radius whenRelec50 @note that
sinceh`@R, ln(h` /R) depends only very weakly onR#. In
our previous paper we assumed a constant solvability par
eter, which is equivalent to takingK50. The above more
rigorous treatment makes a small change in the value oA,
but yields qualitatively the same basic result as was foun
@18#.

For Relec!R0 this gives the tip radiusR'R0(1
2ARelec

2 /R0
2) and tip velocityv'v0(11A8Relec

2 /R0
2), where

A85A11/D1 . The radius decreases with increasingRelec
until a limit is reached whenRelec5R0/2A1/2, at which point
R5Rmin5R0/2 andv5vmax52v0(2s01K)/(s01K). The qua-
dratic equation has no real roots forRelec.R0/2A1/2, indicat-
ing that the above modified solvability theory cannot be u
for large Relec, or equivalently whenw0 is above some
threshold potentialwmax.

The lack of real roots for large applied potentials is
lated to the familiar phenomenon of nucleation in a clo
chamber, as we found above from the spherically symme
solution to the Smoluchowski equation. In the present c
of dendrite growth, above a threshold potential we find t
surface tension can no longer stabilize the tip radius. At
point the tip experiences runaway growth asR→0 under the
influence of the Mullins-Sekerka instability~here enhanced
by electric forces!. The tip velocity thus increases until it i
stabilized by some other mechanism.

D. Stabilization of electric needle growth

We refer to crystal growth withw.wmax as the ‘‘elec-
tric’’ needle growth regime, which is distinct from the no
mal growth regime in that the tip velocity is no longer st
bilized by the Gibbs-Thomson effect of surface tensio
Observations in this regime~see below! reveal a rapidly
growing needle morphology, which again exhibits a sha
preserving growth. For this to occur we must have some n
physical mechanism which stabilizes the tip velocity agai
the Mullens-Sekerka instability. Furthermore, this mec
nism must turn on very rapidly with decreasing tip radiu
more rapidly than the Gibbs-Thomson effect, in order to p
vide the necessary stabilizing effect in the electric grow
regime.

We suggest that tip heating, arising from the latent h
generated by the condensing molecules, is a likely candi
for a stabilizing effect. The vapor pressure above the soli
seen from the Clausius-Clapeyron equation to increase e
nentially with increasing temperature, asp;exp(2T0 /T),
whereT0 is equal to the latent heat per molecule divided
the Boltzmann constant. Thus a small increase inT with
n
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increasing tip velocityv may be sufficient to stabilize the
electric needle growth. Tip heating was ignored in the d
cussion above, which is valid for smallv, but can become
significant at the higherv produced by electric growth, as i
seen in using the following argument.

We consider the growth of a semi-infinite rod of consta
radiusR, where condensing molecules cause the rod to
crease its length with velocityv. Heat is deposited at the

growing end of the rod at a rateQ̇input5aṀ , wherea is the

latent heat of condensation,Ṁ5pR2vr is the mass deposi
tion rate, andr is the solid density. We assume that this he
conducts along the rod for some distanceL, and is then con-
ducted into the surrounding solvent gas. Convection will a
play a role in removing heat into the surrounding mediu
but we will ignore its contribution for this approximate trea
ment. Conduction down the rod is approximatelyQ̇rod
'ksolid(pR2)DT/L, whereksolid is the conductivity of the
solid and DT5Ttip2Tambient is the temperature differenc
between the end of the rod and the ambient medium. C
duction into the surrounding gas is approximatelyQ̇solvent
'ksolventpLDT/ ln(R̀ /R)'ksolventLDT. Since in steady state
we must have Q̇input5Q̇rod5Q̇solvent, this gives DT
'(ksolidksolvent)

1/2arvR. From Eq.~5! above we can see tha
vR increases with decreasingR asvR;(Relec/R)2 for large
Relec in the electric growth regime. Thus we find a tip heati
that is strongly dependent onR, which will act to stabilize
the needle growth. As we discuss below, additional tip he
ing may result from ionization effects, if the electric fields
the tip become excessive.

III. EXPERIMENTS WITH ICE DENDRITE GROWTH

An experimental demonstration of this growth instabili
was realized by growing ice dendrites from water vap
@18,23#. In many regards water ice is not an ideal experime
tal system for these measurements, since it is known
surface kinetic effects are usually very important in ice cr
tal formation, resulting in strongly faceted crystal grow
@24–26#. The above theoretical calculations, however, a
based on standard solvability theory, which does not inclu
any such surface kinetic effects. Furthermore, the surf
structure of ice is very complex, being dominated by t
dynamics of a thin quasiliquid layer@25#, resulting in a rich
crystal growth behavior as a function of temperature a
supersaturation@26#. From the experimental side, howeve
water ice is very easy to work with, given its convenie
freezing temperature, and the large polarizability of wa
molecules facilitates the electrical effects we wish to o
serve.

We find that we can greatly reduce the effects of surfa
kinetics by growing ice dendrites at a temperature n
215 °C ~near the dendrite growth peak@26#! and at super-
saturationsD1*0.4. In this region of parameter space t
prism faces of the growing dendrites are rough, yielding d
drites with approximately parabolic tips. In this parabo
regime, the growth of the prism faces is described by
Hertz-Knudsen relation@27#, and is no longer dominated b
surface kinetics. In contrast, growth of the basal faces in
regime is still affected by surface kinetics, producing nea
flat two-dimensional dendrites. However, on top of the fl
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dendrite plate we typically observe a ridgelike growth, whi
forms a ‘‘backbone’’ as the dendrite growth proceeds, as
be seen in Fig. 1. This backbone structure is also commo
seen in the growth of ‘‘sectored plate’’ ice crystals, and
formation is at present poorly understood@28#. Nevertheless,
the backbone results in a dendrite tip structure which is
nearly as flat as the dendrite as a whole, and thus the
proximation of a paraboloidal shape is a reasonably accu
one near the dendrite tip.

The experiments were performed in a vertical thermal d
fusion chamber, measuring 15 cm in width and depth, and
cm in height. The chamber was of a triple-walled acry

FIG. 1. Morphologies of ice crystal dendrites grown from s
persaturated air at215 °C. All four images have the same scale.~a!
Normal dendrite growth atD1'1, with no applied electrical poten
tial; ~b! unusual growth at a potential of 2000 V, withD1'1, show-
ing the supression and stabilization of sidebranching. The tip ve
ity and sidebranch spacing both increased as the tip advanced
surroundings with higher supersaturation. Note that in this morp
ogy the sidebranches appear fully developed very near the tip
gion; ~c! a continuation of the growth in~b!, showing a common tip
splitting instability that occurs above the threshold potential. H
there appears a sudden rotation of the crystal axes by 30°;~d! a
dendrite grown atD1'0.5, showing a smooth transition from no
mal growth to a rapidly growing needle morphology. The tip v
locities before and after the transition are 5 and 70mm/sec, respec-
tively.
n
ly

t
p-
te

-
2

construction, being cooled at the base by a commer
chiller system. Both the top and bottom of the chamber w
temperature regulated using an inner layer of thermoelec
coolers controlled by a servo mechanism@29#. The solvent
gas in the chamber was ordinary laboratory air at one at
sphere of pressure, and water vapor was supplied at the
of the chamber via a water-soaked felt reservoir. We
served the crystal growth to be somewhat sensitive to va
impurities in the air, particularly solvents from glue used
the chamber construction, so care was taken to minim
these effects. Imaging of the growing crystals was done fr
the side, using a standard video camera attached to one
of a long-distance stereo microscope. Images were digiti
using a video frame grabber attached to a personal comp
with software for time-lapse imaging. The images were
digitized at a resolution of 6403480 pixel resolution, with a
typical scale of 10mm/pixel. Figure 1 shows several ex
amples of dendrite images.

Ice dendrites were grown on a thin tungsten wire, throu
which an electrical potential was applied. A quantitati
comparison with the above theory was realized by first
tablishing the growth of a single normal (w050) dendrite,
which had a tip velocity of typicallyv'3 mm/sec. After
achieving a stably growing dendrite, an electric potential w
applied to the tungsten wire. The finite conductivity of ic
and slow dendrite growth, along with the very low curre
flow @23#, ensured that the dendrite possessed a nearly e
potential surface. Occasionally the applied potential resu
in dendrites with a large uniform sidebranch spacing, wh
is shown in Figs. 1~b! and 1~c!. This behavior is rare and is
currently unexplained.

More typically the dendritic growth remained qualita
tively similar to that of normal growth at low potentials, wit
v increasing withw0 up to a threshold potential. Figure
shows measurements of the tip velocity of a single grow
dendrite, wherew0 was increased in steps during the grow

c-
nto
l-
e-

e

FIG. 2. Data points show measurements of the tip velocity o
single growing dendrite as a function of the applied electrical
tential. The solid line is a fit to the points using the modified so
ability theory described in the text. The two free parameters in
theory,v0 andwmax, were adjusted in a least-squares fit to the da
which gave a best fitwmax51450 V. This dendrite underwent
tip-splitting instability when the potential was raised from 1300
1400 V.
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FIG. 3. Group of five ice crystal needles~left!, grown along the@0001# axis at25 °C using an applied potential above threshold. Af
the needles grew to approximately 1 cm in length, the electric potential was turned off and the crystals were lowered to215 °C in the
diffusion chamber, which is the temperature at which platelike dendrites form. This resulted in the growth of normal single-crystal d
stars at the needle ends; one of these is shown as a negative image at right, which has a diameter of 2.4 mm.
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After each step inw0 , the growth was allowed to stabilize t
a constant tip velocity. We observe thatv increases slowly
with increasingw0 , until a threshold potential is reached,
is expected from the modified solvability theory above.

A comparison of the data and theory can be made
combining Eqs.~8! and ~9! above into the approximate pa
rametrized expression@18# v'4v0@11(12w0

2/wmax
2 )1/2#22,

wherev0 is the normal tip velocity. In Fig. 2 the two param
etersv0 andwmax were adjusted via least-squares to best
the measured points. This fit gavewmax51450 V, which was
in reasonable agreement with the observed threshold va
Unfortunately, a more quantitative comparison betwe
theory and experiment is very difficult with this system, o
ing to the unusual characteristics of ice growth.

Above a threshold potential the enhanced dendrite gro
behavior became unstable. If the potential was slowly rai
above threshold withD1&0.6, the dendrite tip would some
times make a smooth transition to a rapid growth behav
as shown in Fig. 1~d!. This resulted in a thin, featureles
needle-shaped crystal, with a diameter of;20–30mm, mov-
ing at velocities typically 20–70mm/sec along the origina
a-axis direction~although velocities as fast as 200mm/sec
were observed!. The rapid ‘‘electric’’ needle velocities were
observed to show considerable variation, which rema
mysterious since it was not always simply correlated with
external growth conditions. A quantitative investigation
the details of electric needle growth is currently in progre

Not surprisingly, given the complex surface structure
ice, we observed a variety of electrically induced grow
behaviors@23#. If the potential was slowly raised at highe
saturations (0.6,D1,2), the dendrite tip often underwen
the tip-splitting instability shown in Fig. 1~c!. This resulted
in a restructuring of the crystal at the dendrite tip, so t
further growth occurred from an appended crystal wh

@11̄00# axis was approximately collinear with thea axis of
the original crystal@18#. We are uncertain of the cause of th
peculiar behavior, which may be related to electrofreez
y

t

e.
n

th
d

r,

s
e
f
.

f

t
e

g

phenomena@30#, possibly augmented by tip heating effect
It is conceivable that the mobility of water molecules o

the growing crystal surface may be affected by the stro
electric field gradients near the sharp dendrite tip@31#, and
thus may possibly be responsible in some way for the in
bility reported here. We believe, however, that such effe
are minor in comparison to the enhanced diffusion descri
above. First of all, the applied surface fields, while subst
tial, are small compared to intrinsic crystal surface fiel
And second, we observed that the main growth instabi
described here did not exhibit any dependence on the sig
the applied potential. This observation also allows us to
fectively rule out ionization effects near the dendrite tip
playing any significant role in the growth dynamics durin
electrically enhanced normal growth. Electric needle grow
may be affected by ionization effects, however, particula
if significant additional tip heating results. The applied p
tentials and tip radii in the electric growth regime are su
that fields at the tip are near the breakdown field for air,
ionization effects may be significant.

If a potential value above threshold were suddenly app
at any saturation, the result was usually the copious prod
tion of thin needle crystals, similar to that shown in Fig. 1~d!,
which typically appeared from the sharp corners of face
crystals. We observed electric needle growth along m
different crystalline axes, which were determined by remo
ing the applied potential and observing the subsequent c
tal growth morphology. Near25 °C we could routinely grow
ice needles along the@0001# axis, while at215 °C growth
was often along the@ 1̄ 1̄20# axes. This growth behavior is n
doubt related to the normal temperature dependence in
crystal growth @26#. We also frequently observed electr
needle growth along the@011̄0# axes@23#, which is not cur-
rently understood. Furthermore, we often observed nee
growth along seemingly random crystal orientations, s
gesting that the electrically enhanced diffusion was ov
whelming the otherwise dominant crystalline anisotropy.
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IV. DISCUSSION

In summary, we have found a new type of dendr
growth instability, brought about by electrically enhanc
diffusion of polar molecules in the presence of the dend
tip. The nature of this external force provides that the pr
ence of the dendrite itself affects the diffusion of material
its surface, adding a nontrivial nonlinear term to the diff
sion equation. The principal result of theory and experim
is the existence of a threshold potential, above which d
drite growth can no longer be stabilized by surface tens
effects. This instability is analogous to the droplet grow
instability responsible for the visualization of charged p
ticle tracks in cloud chambers.

We also note above that this threshold behavior isnot
expected to be present in electrochemical deposition
tems, given the very different functional form of the elect
cally enhanced diffusion of ionic solute molecules. Th
although dendrite growth and other growth instabilities ha
been seen in electrochemical deposition, the instability
culated above appears to be unique to growth from neu
polarizable molecules.

We note that the enhanced diffusion brought about by
applied potential is well understood at a fundamental lev
and is straightforward to compute. Thus, the applied pot
tial provides the experimenter with a convenient, contin
ously adjustable parameter with which to alter dend
growth. Further studies on other polar systems with l
complex surface properties in comparison to ice should p
vide new insights into pattern formation in diffusion-limite
growth. Such studies may shed light on remaining proble
in understanding the dependence of the stability param
on crystalline anisotropy@11,32#, and should also contribut
to the general theory of morphological transitions duri
nonequilibrium growth@33#.
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In addition to its intrinsic interest relating to dendri
growth theory and phenomenology, this instability is partic
larly interesting because it results in the controlled growth
thin, featureless needle crystals, which can in principle
grown to any length. The growth dynamics of these need
is qualitatively different from needle crystals grown via oth
well-known techniques, for example via single screw dis
cations at needle tips@34#, or via the vapor-liquid-solid
mechanism@35#, and may be of some practical interest, pa
ticularly for the crystallization of large organic molecule
which can have substantial electric polarizabilities.

As a particular application, we find that the formation
long, thin, featureless electric needles is of some use in
study of ice crystal growth, which remains an extreme
challenging case study because of strong three-dimensi
surface kinetic effects, complicated by a quasiliquid lay
After first producing an electric needle with the desired cr
talline orientation, one can then remove the electric poten
and observe the subsequent growth of isolated single
crystals, as is demonstrated in Fig. 3. By growing crystals
the end of long needles, the saturation is relatively unp
turbed by the crystal support, allowing more detailed qu
titative measurement of ice crystal growth dynamics. This
particularly true when investigating growth at high vap
supersaturations, where the perturbation from condensa
on the crystal support can significantly interfere with t
desired growth. This work also suggests that one may n
to consider the effects of electrically enhanced diffusi
when observing the growth of charged ice crystals held in
electrodynamic trap@36#.
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